HyPer

A Hybrid OLTP & OLAP Main Memory Database System

Alfons Kemper, Thomas Neumann
Presented By: Brad Glasbergen

%’ WATERLOO

Database Workloads

% &

OLTP OLAP

- Fast - Long

- Constrained - Complex

- Write-heavy - Read-heavy

IIIIIIIIIIII

OLTP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

IIIIIIIIIIII

OLTP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

IIIIIIIIIIII

OLTP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

IIIIIIIIIIII

OLTP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

N DN =2 ==

IIIIIIIII

OLTP Database Design

ORDER DISTRICT WAREHOUSE

1 1 1

2 2 2

INSERT ORDER INTO

NEW_ORDERS ...

............
% WATERLOO

OLTP Database Design

ORDER DISTRICT WAREHOUSE
1 1 1
2 2 2
3 3 3

INSERT ORDER INTO
NEW_ORDERS ...

W W WOININDNDN =A==

>

IIIIIIIIIIII

WATERLOO

OLTP Database Design

ORDER DISTRICT WAREHOUSE
1 1 1
2 2 2
3 3 3
SELECT COUNT(*) ...

GROUP BY WAREHOUSE

W W WOININDNDN =A==

>

IIIIIIIIIIII

WATERLOO

OLTP Database Design

ORDER DISTRICT WAREHOUSE
1 1 1
2 2 2
3 3 3
SELECT COUNT(*) ...

GROUP BY WAREHOUSE

W W WOININDNDN =A==

>

IIIIIIIIIIII

WATERLOO

OLTP Database Design

ORDER ‘ DISTRICT ‘ WAREHOUSE *1* H

Long-Held Conflicting Locks

1
2
3

= = *2* E

3 3 3
SELECT COUNT(*) ... > a
GROUP BY WAREHOUSE v 3

............
% WATERLOO

OLAP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

IIIIIIIIIIII

OLAP Database Design

ORDER

DISTRICT

WAREHOUSE

1

2

1

2

IIIIIIIIIIII

OLAP Database Design

ORDER

DISTRICT

WAREHOUSE

SELECT COUNT(*) ...

1

2

1

2

GROUP BY WAREHOUSE

IIIIIIIIIIII

WATERLOO

OLAP Database Design

ORDER

DISTRICT

WAREHOUSE

SELECT COUNT(*) ...

1

2

1

2

GROUP BY WAREHOUSE

>

IIIIIIIIIIII

WATERLOO

OLAP Database Design

ORDER ‘ DISTRICT ‘ WAREHOUSE

1
2
3

— 3
Random-Write Inserts
- . — 3
3 3 1
INSERT INTO ORDERS ... 2
- 3
T WATERLGO

@

The State of the Art

Load

Delay

OLTP OLAP

IIIIIIIIIIII

1.5 TB DRAM ~ 50k

Put Everything In Memory

IIIIIIIIIIII

In-Memory OLTP Engines
1

—>

WD W WOINNDN ==

IIIIIIIIIIII

Partitioned OLT<P Transaction

T
LT
)

Order

Order

Order

Order

Order

S
Op Queue

IIIIIIIIIIII

Bad at Analytics Transactions!

T
LT
)

Order

Order

Order

Order

Order

Order

IIIIIIIIIIII

HyPer: Fork a Snapshot!

Partition 1 EC@:]:
Partition 2 :[:@:]:

:Cé]: Dedicated OLAP process

............
%’ WATERLOO

Dedicated OLTP threads

HyPer: Fork a Snapshot!

Partition 1 E@: Order
Partition 2 :[:@:]: Order

|
:@ Fork

IIIIIIIIIIII

HyPer: Fork a Snapshot!

Partition 1

Partition 2

{o}
{o}

{o}

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Fork

Analytics

UNIVERSITY F
&) WATERLOO

Fork: Technical Details

Page 1 7@

Page 2

Page 3 7 @:
Fork()

Page N :@:

IIIIIIIIIIII

Fork: Technical Details

Page 1

Page 2

>
L.
&

Page N Fork()

IIIIIIIIIIII

Fork: Copy on Write

@

Page 1 @ > Page 1
Page 2 / :
ade Copy on Write
Page 3 @:
Page N :@:
| B WATERLSS

Fork: Copy on Write

Page 1 @/, Page 1
Page 2 /

Page 3 @: _w Page 3
Page N

IIIIIIIIIIII

Fork: Freeing Memory

Page 2

Page 1

g

Page 3

Page N

/B

IIIIIIIIIIII

Cleaning Dirty Snapshots

Partition 1

Partition 2

{o}
{o}

{o}

Order

Order

Order | Order

Order

Order

Order

Order | Order

Order

In-flight data, inconsistent!

Fork

Analytics

UNIVERSITY OF
WATERLOO

Cleaning Dirty Snapshots

Partition 1 :[:@:]: Order

Undo Logs

(o)

Persist t/‘

Undo

@ Fork | Undo Analytics

IIIIIIIIIIII

Logging Bottlenecks

@:]: Order
@: Order

IIIIIIIIIIII

Logging Bottlenecks
gging s _ @
Ime / t/‘
:@: Run C
:C@:]: Run

IIIIIIIIIIII

Logging Bottlenecks

- (o)
Time
:@: Run C

:C@:]: Run C

IIIIIIIIIIII

Logging Bottlenecks

-
Time ACK @
:@: Run C

:C@:]: Run C

IIIIIIIIIIII

Logging Bottlenecks

- (o)
Time
ACK k%
:@: Run C Run

:C@:]: Run C

IIIIIIIIIIII

Logging Bottlenecks

Commit 1
g (o)
Time
RZ
:@: Run C
:C@:]: Run C

IIIIIIIIIIII

Logging Bottlenecks

Commit 1, Commit 2
: -
Time
:@: Run C

:C@:]: Run C

IIIIIIIIIIII

Logging Bottlenecks

{o}
{o}

-
Time
Run C
Run C

Increases Latency,
Increases Throughput

............
%} WATERLOO

Evaluation
00 4
OLTP

TPC-C Order Entry
Benchmark

&

OLAP

TPC-H Analysis
Benchmark

IIIIIIIIIIII

OLTP Throughput

"g HyPor VoltDB
(single

(single
oo thread) node)
OLTP 126 K 55 K
Why?

IIIIIIIIIIII

OLTP/OLAP Throughput

-E @ HyPer VoltDB

00 380 K 300 K

OLTP OLAP
5X 3x Competitive with

MonetDB

IIIIIIIIIIII

Key Contribution

Leverage OS fork() to make
efficient snapshots!

IIIIIIIIIIII

Efficiently Compiling Efficient Query Plans Fast Serializable Multi-Version Concurrency Control
for Modern Hardware for Main-Memory Database Systems

Thomas Neumann Thomas Neumann Tobias Mihlbauer Alfons Kemper
Technische Universitdt Mnchen
Munich, Germany Technische Universitdt Minchen
neumann@in.tum.de {neumann, muehibau, kemper}@intum de

ABSTRACT > ABSTRACT Scrialzalilty is a great cancept, but it is hard to im-
plement offidentlv. A classical way to ensure sorialzability
¥ ta 1dy Twa-Pase Lockmg [2PL) [42)
Using 2PL, the DBMS mamta 1 and write Jocks ta
emiire that confiicting transsctions ass exaqited in'a welk
defined order, which results in serialzable execution sched-
wes. Locking, however, has several major disadvantages
First, readers black cach other. Second, mest
are read-cnly [33) and therefore harmle

Multi-Version Cancurrency Cantral (MVOC) & a widely an-
played concurrency cantral mechanism, as it allows far exe-
cution wades where roaders never Bock writers. However.
1 stems mnplement anly snapshot isalation (S1) mstead
of full serializability. Adding scrialzability guarantes
isting ST implementatims tends to be prohibitively ex
We present a navel MVOC im plementation for main-mem.-
systems that has very little averhead compared
to serial exccution with single-verskn concumrency cantral
Upd
s beforedmage deltas in

As main memary grows, query perfarmance & mare and mare
determined by the raw CPU o

n A variant ¢

f query pracessing itsclf

Te

The classical Reratar style query processing techmique & very
simple and flexitle, but shows poor performance on madern
CPUs due to lack of locality and frequent instruction mis-
predictions . Several techniques like batch arented proce
or vectorizxd tupke processing have been propased in the
past to improve this situatian, hut even these techniques are
frequently aut-performed by hand-written execution plas.

In this wark we ps pilation stratogy th
translates a query into compact and efficient machine code

ng =

and write

tramsactio

ary database

a transaction-ordering perspective 5 a locking-based
wolatin mechanim, w0 update transactim is allwed to
change & data abject that has been read Iy a potentially
kng-running read tramsaction and thus has to wait until the

Feme ot
o LEBmge cven when maintaining serializalility guarantecs

S Ty data in-place anc
n ; Figure 1: Hand-written code vs execution engines undo baffers mot % s to retain the high scan per-
using the LLVM campiler framewark. By aimiug at goad for TPC-H Query 1 (Figure 3 of [16]) formance of single-versx but ako farms the ba-
cade and data locality and predictable branch layout the sialimbility alidation

cent & novel ¢

real transaction finihes. This severely limits the degree

comcurrency i the syste

Mudt-Verston Concarrency Control (MVCOC) |42, 3
offers an clegant solutiom to this problan. Imtead of up-
dating data objects inplace. each update creates a new ver-
n of that data ab)
still see the akl version while the update transaction pro-
cocds camcurrently. As a consequence, read-anly tramsac-
tomws never have to wait, and in fxct do not have to use
bcking at all. T rable property and

ur cheap and fine-grain
CPUs. Third, this madel often results in poor code hality aniom. T
and camplex haak-keeping. This can be scen by

resulting code frequently rivals the perfarmance of hand-
written C++ ¢ We mtegrated these techniques imo the
HyPer main wewory database syitem and show that this
results i excelkent query performance while requiring only
modest campilation time

)

1 ea & based on an adaptation of
precisiom bocking and verifies that the (extemsiomal) writes
of recontly comanit ted transact

nera donot intersect with the

asimple table scan npressed rdation
ne at a time, the table scan aperator has (intemsxmal) road predicate space
to rememba where i the compressed stream the current tiom. We experimentally show that our MVOC mudel allows

1. INTRODUCTION tuple & and jump to the carrespanding decompressiom code vary fast proce

when asked far the next tupk well as vead-heavy tra

1. such that concurrent readers can

must he produced f & cammitting transac-

sing of tramactic
tioms and that there is little need

s with paint accesics s

Mast database systems translate a given query into an

an extramely ¢

expression in a (physical) algebra, and then start evaluating These absarvations have Jod same modem systems to a ta greles. ST aver ful el EmtiRty Ay donges the reason why many DBM slanent MVCC, e.g., Ora-
this algebraic expression to produce the query result. The departive fmm Qs pase Werstos: midal, ol thar intemally C ses and Subject Descri . cle, Microsaft SQL Server |8, 23), SAP HANA (10, 37), and
traditional way xccute these algchraic pla the fteratar (eg.. by intemally decompressing a number of tuples at ~ategories and Subject Descriptors PostgreSQL [34). However,m <ystems that use MVCCda
imes also called Valcano-styke processing |4 ance and the ‘ d data), or 112 |Database Management mt guarantee serializmbility, but the weaker isolatian leve

al algebraic aperatar conceptually produces a extemally by pec e tuple durin Snapshot Lofation (SI). Under SI, every transaction secs

tuple stream fram its imput, and all RN (I3 o s ot cnte]d Keywords the database in a certain state (typically the last committed

«d p
ir aver the large mmber of produced tupk

cowing amartzes the costs

tuple stream by repaatedly calling the rext function of the
aperatar.

Multi-Version Concurrency Cantrol: MVOC; Serial zability state at the begmning of the transactim) and the DEMS
emsures that two cancurrent transact s do not update the
1. INTRODUCTION same data object. Although SI offers fairly good salation,

ik me nan-serialzable schadules are still allowed |1, 2]. This
4 ': I\II-I\I'\ s & often reluctantly accepted hecanse making S1 serializablk
em (DI

n of heing alane in the da-

that the imocation casts hecame negligibke. Houever, it ako

This is a very uke and simple interface, and allows far
casy combmat om of arbit rary wators, but it dearly comes
from a time when query proce ted by 1/O
and CPU comsumption was ke rst, the mext

ength ofthe iteratar madd, namely the
pipelime data. Pipdining means that an aper

s data o its paremt aperator withaut capying «
atherwise materializing the data. Sclectians

diminates a maj

sction wolatxom & ane of the me

ing was domi
inpart ant

forod by a database managemen
he user with the il

tends o be prohditwely cxpensioe 7). In particular, the

far example,

susiction will becallxd bor. cvesy ¥ingle tuple; prodacad o sre pipelining operatars, as they tuples araund tabase system, even i the prasence of multipk concurrent A lut s IR g ‘,'m'.l"m;’wlﬂ

intenediate ar final result, i, millians of times. Secand, P aof every transactian, which creates a huge averhead far rea
without modifying them. But abo more complex aperatars users, which greatly simplifies applicatin development. In : 5

the call ta next i usually a virtual call ar a callvia a fnction =t frbmeriey: a e T g Ton ot e DBMS ek sies hind s s3I o heavy (e, analytical) workkads. S$till, it & desirable ta

painter. Cansequently, the call is even more expensive than S8 JO TR CR G e TACOWL et KL anm ol L lerr; pat 3 & detect serialzability corflicts as they can kead to silent data

sides. When prodwing mare than ane tuple during a call current access patterns are safe, Meally by being serialzable

a regular call and degrades the hranch prodiction of madern Ry Zady carruption, which i tum can e hard-to-detect bugs

has foe prvaded st copie

sed any more. as the work e peraesd or

new here ta be accessible.

this pure pipelining usually cannat b
tupks have to be materializal
This material zation has other advantages like allowing for
but in general the lack of pipelining

In this paper we inmtraduce a novel way to implement
MVOC that & very fast and efficient, both far SI and for full
serializability. Our S
carcfully engmeered than totally new, as MVOCisa wellun

implanaitation & admittedly more

penmtted o cupry therwise, o

al
be motace and the S35 Gtaoa o the St g

To copy oterwse, 1 it corsumes more memary handwidth
republish. [0 PO 06 servom Of 1 ralstsbute 1o ik, QU e peay speolc An interesting observation in this cantext is that a hand-
perimseaoi dmdir o oo Arta froes this voliste wee sviol 1 p written program clearly out perfarms even very fast vectariaed
el resiiack The sy hawn in Figure 1 (ariginally fram |16]). In a
way that & to be expacted s & human might us

T S b tricks that database management systems woukd never come

Fegires price »pecific penriaeon d

od appraach that recently recaved rencwed interest i
the cantext of main-meanory DEMSs [23). Carcful engincer-

ing, however, matters as the perfarmance of vensim main-
tenance greatly affects transactian and query processing. It

toms, a

f conrs

RUMA has it: Rewired User-space Memory Access is
Possible!

Felix Martin Schuhknecht

Infor mation

Jens Dittrich Ankur Sharma
Systems Group

infosys cs.uni-saarland.de

Abstract

Memory management is one of the mast bo

research.

Liys amimorrolein tsks B froe-space manag
o efficient suce wage. Here and there we ako realize & im
pact on database performance when warrying dhost NUMA-aware
memaey allocation, deacompact and defa
tamion. Bet overall Jet's face #: the entire topic sounds as exciing
hage collection” or ‘debeg ging 4 pro gram for memory leaks
Whie if there were a techn igoe $at would promos: memory man
meak from a third chiss helper thingie t0a first cliss cmacn i
st and syseems design? What if that sechnique samed the
role of memory mimagement ina ditibase sysiem (and any other
d £ wpsicke- down? What if that tech nigqes could
anified as a key for re-de
the effect of ouperforming exising state-of-the.an med
sidembly? we would write this pag
We insrodace RUMA: Rewined Userspace Memory Access. It
sological i mamgement, ie. we allowdevekpers

as’

dpning various core algoridens wish

wods con

suppoet offered by hardware and opering system. We show dat

fund amental duaahase b kiin g b Jocks sach as amayoperations, pur

¢. and smapsottng henefie sromg by from RUMA
INTRODUCTION

Daab s

ers in vanows fems.

mana,

syswems handle memory at e kiphe lay
allocaicns differ heavily in swe, fre
quency, and lfetme. Many programmers txat memory mas
a5 2 necessary evil that & compleeely decospled fom the
sithm and data swecesre design. They chim and release me
cry using standard s 11 0= and ina carckess fashion, without
effects of their allocation patte
arike back heavily

to commter this With clissical allo
mn allocxxon is sernved

d memary o via the allocation of fresh pages. requesied

2 I poo.
ice i ex

canoes (ke loc) ® 5 unclear wh

1 The differe
am the system is exm

gram must be mwemupted and the kernel has o ingilize te new

<. howewer, s significant. Request

mely expensive as the po

& Bewal usder At e

A e To view a oo
tp M et o0 y-4ac- V. Foe

et those overed by this B o, obtan pertis o by can g

r Vol 9 No. ID
150-3007/1 606

pages with zemes, hefore the progaim can continee the execution

Thes, carefal engineers implement theirown pooling sysem i or.
der to gaim comrol over the memory allocition and 0 mese por
soms of & as effecivdy as possble. However, masaal poolis
Towrie effident pm

ary regions. Fast algorshms proaess data g
emwous amays. Dat stmctums sore tha data as
compact as poss bk o maximze memory bocality. This
chored dov munce, e awhors
of (T aspue agaimst storing the mpet 0 a xelitiona] opergorat sev

eral memory bocaticas for MonatDB: “1s

is

ed &

v m suke-of theant sysems. Re

o exploit

wuld skip from one ch

X
. Statec Rewored
% ructares Structures
4| (eg Am
<5
&
Structural Flexibility

Fgwe I: Strucural Fleibility vs Lookup Performance
While static structures fike the array provide fast and comwvenient &
s paformance, their structuge is hard 1 modify (exiend, shrink).
Whilke dynamic structures [ike the linked [ist 25 35y fo modify, the
Joak up of entries is indirect and sbow. Rewired s tructures offer di
st acaess and high strictursl fexibility at the same time.

Unformnaely. # i not always possible to gather lirge comsec
as fom the pool dee w0 fagmesason. To
work around this problem. memoery can be daimed as chanks

from val, wsing 2 simple softwan:-hased mdizcson. Al
s of memory are served by ghacing together individml mem.
cry chunks via a direcoory. Thas, imstead of accessing
oy at offie 1 by «| 1], the acaess is perfommed mdimedy via

s

e en

i k552 E5i s Of couse, this m
lixes the definition of contomoss memary. as ew

e indimctionnow. As we will s
of the memory, this can mowr sig

Obvioesly, demomswged & the example of pooling, we face a
seneral tade-offin memory mamagemest: flexib
formance. Apparcealy. these prope

0y Vs @ccess per

sties seem to be conradiceory t
cichother. On the one hand, a sutic fixed sze amay is eemely
efficient 10 process in Gight loops. bet hard ©0 cuend, shrnk., o
modify stactarally. On the other hand, a chank-bused strocore as

768

UNIVERSITY OF

2 WATERLOO

Discussion Questions:

Are there other operating systems primitives that we can

leverage in databases?

How “real-time” do real-time analytics *need* to be?
How do we scale-out HyPer's OLTP engine? Do we need

to?
Update propagation to secondary servers

UNIVERSITY OF
WATERLOO

